If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-5y-34=0
a = 2; b = -5; c = -34;
Δ = b2-4ac
Δ = -52-4·2·(-34)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{33}}{2*2}=\frac{5-3\sqrt{33}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{33}}{2*2}=\frac{5+3\sqrt{33}}{4} $
| 2x+7x+22=103 | | 3x–5=6x–11 | | 6x+18=108 | | 5x+5-3x-6=48 | | 10+1*5=x | | 1*5=x | | 1^5=x | | (2x+3)(2x-3)=x+9 | | 3x–5=31 | | (x+3)^2+90=15 | | 1/x+1/3x=8/9 | | x2-12=x+32 | | x−15=34 | | c+5/8=-19/16 | | X^3-110x^2-400x+12000=0 | | 2x^2-34/x^2-5=0 | | x=15+-1 | | c+5/8=19/16 | | x/5=x/6+6/5 | | 2y=3(y+1) | | (2x+3)(2x-3)=x+5 | | 3-4x=7x+10 | | (x+4)(x-4)=x-9 | | (-1/7)(x+14)+1/7(x+7)=x+6 | | -t=9(t−10) | | 25-x=(6-(6-9))-27-125 | | (2x+3)(2x-3)=x-5 | | 25-x=(6-(6-9)) | | 3n=5(n-4) | | (2x+3)(2x+3)=x-5 | | ½x+⅓=15 | | (1/2)x+(1/3)=15 |